IBIS modeling of DDR2 in conjunction with linear channel analysis

R

Ian Dodd Architect, High Speed Tools Ian_dodd@mentor.com

27th October 2006

© Mentor Graphics Corp., 2006, Reuse by written permission only. All rights reserved.

Overview

- High performance source synchronous buses, including DDR2 are known to be susceptible to resonances
 - **—** Established solution is to add compensation capacitors
- It is difficult to demonstrate these resonances in traditional time domain SI simulators
 - Resonance only occurs with specific repeated bit sequences
- Linear channel analysis can identify the resonances but has limitations in its ability to determine if they are harmful
 - DDR2 drivers exhibit non-linearity's which may affect characteristics such as overshoot
- This paper describes the early results of our analysis of resonances in DDR2 buses using of both tradition circuit simulation using IBIS 4.2 models and linear channel analysis

Analysis Steps

- 1. Extract DDR2 Address net from layout
 - **Example has motherboard, 2 DDR2 modules and connectors**
- 2. Measure pulse response of the net using standard circuit simulation
 - **IBIS 4.2 driver and receiver models**
 - Simulating multiple pulses allows the degree of non-linearity to be determined
- 3. Linear channel analysis
 - Determine worst case bit sequence
 - Create eye diagram with linearized drivers and receivers
- 4. **Standard circuit simulation using worst case bit sequence**
 - Create eye diagram without linearization

1. DDR2 address net extracted from layout

IBIS Open Forum, China, 27th October 2005

GREAR

2. Full non-linear simulation to establish pulse response

IBIS Open Forum, China, 27th October 2006

3. Linear Channel Analysis

Eye Diagram

IBIS Open Forum, China, 27th October 2006

4. Full Non-linear simulation using Worst Case Stimulus

IBIS Open Forum, China, 27th October 2006

Further Work

- This paper is based on the early results of this investigation into resonances on DDR2 buses
- We plan to further examine the detailed affects of channel layouts, connector characteristics and the optimization of compensation capacitors

